

Institutional Policies to Promote Technology Transfer:

Best Practices

Pune, India
February 7, 2024

Dr. Ashley J. Stevens
President

With thanks to:

Agenda

- ❑ Introduction and Setting the Context of the Workshop
- ❑ IP and Tech Transfer: Policies and Institutional Processes
 - ❑ Tea / coffee
- ❑ Entrepreneurship and spinouts: Policies and Institutional Processes

You need three things

- ❑ The right policies
 - ❑ Relatively easy
 - ❑ Plenty of sources
- ❑ The right people
 - ❑ Harder to find in a new ecosystem
- ❑ The right culture
 - ❑ Takes time to create

Program

- ❑ Needed Policies
 - ❑ Ownership
 - ❑ IP Policy
 - ❑ Conflict of Interest Policy
 - ❑ Consulting Policy
 - ❑ Equity Policy
- ❑ Cultural Issues

The Many Missions of Universities

- ❑ To teach existing knowledge to the next generation
 - ❑ While helping them to transition from adolescents to adults
- ❑ To discover new knowledge and disseminate it broadly
 - ❑ While training the next generation of researchers
- ❑ To care for patients
 - ❑ While advancing medical care
- ❑ To be a source of economic development
 - ❑ While not conflicting with the previous three elements of their Mission!
 - ❑ The newest of the missions

Why Are Universities Engines of Innovation?

- ❑ Faculty are inherently entrepreneurial
 - ❑ Have to “sell” their research programs to funding agencies
 - ❑ Have to “sell” their courses to students
 - ❑ Can “have their cake and eat it too” via “day per week” consulting rules
- ❑ Graduate students are at a stage in their life where they can take risks
 - ❑ Used to working all hours
 - ❑ Great carriers of the technology from the university to industry
- ❑ Universities can’t develop their technologies and have to license
 - ❑ Funding runs out the closer things get to the market
 - ❑ Not their mission
 - ❑ Tend to make paradigm-changing discoveries

What Are the Benefits of Technology Transfer?

- ❑ Economic development
 - ❑ Being seen to benefit the regional and national economies
 - ❑ → Increased government support
- ❑ Reputational
 - ❑ Enhancing entrepreneurship regionally and nationally
 - ❑ → Increased government support
- ❑ Student recruitment
 - ❑ This generation of students is highly entrepreneurial
- ❑ Financial
 - ❑ Corporate support
 - ❑ Faint possibility of financial return from licenses and spin-outs

What Is Going to Drive Technology Transfer In Your Institution?

- Why do you want to do technology transfer?
 - To make money?
 - To indulge faculty?
 - To disseminate the results of your institution's research?
 - To benefit society?
 - To develop the local economy?
- Management's response is often "Yes"
 - Do them all
 - You're now the Office of Technology Licensing and Commercialization, Venture Creation, Industry Liaison, Economic Development and Societal Impact*
- Can you do them all?
 - Or are there trade-offs?

Operating Models for Technology Transfer

- ❑ Faculty Service
 - ❑ Support the creative and entrepreneurial aspirations of faculty and graduate students
- ❑ Revenue Maximization
 - ❑ Generate the maximum amount of license income
- ❑ Knowledge Transfer
 - ❑ Licensing, Sponsored Research, Faculty Consulting
- ❑ Economic Development
 - ❑ Maximize job creation / retention
 - ❑ Regionally
 - ❑ Nationally
- ❑ Societal Benefit
 - ❑ Meet the needs of society that market forces will not meet

Ownership

The Fundamental Question

- ❑ Who owns the results of academic research?
 - ❑ They will control the commercialization of those results
- ❑ Only four options:
 - ❑ The professor who did the research and made the invention
 - ❑ The university that employed him
 - ❑ The organization that paid for the research
 - ❑ The company that wants to commercialize the invention

The US's Historic Approach

- ❑ “He who pays the piper calls the tune”
 - ❑ Government funds the overwhelming bulk of university research
 - ❑ Used to own the resultant IP
- ❑ Was totally ineffective at utilizing the IP it owned
- ❑ In late 1970's, dissatisfaction with the model and the results
 - ❑ Resulted in the Bayh-Dole Act
 - ❑ 1980

The Bayh-Dole Act

- ❑ PL 96-517 – The Patent and Trademark Amendments Act of 1980
- ❑ Main components:
 - ❑ Universities could elect to retain title to the results of Federally funded research
 - ❑ Universities were required to share proceeds with inventors
 - ❑ Most restrictions on licensing terms were removed
 - ❑ Can't assign (sell) the patent, only license it
 - ❑ US manufacture required for products to be sold in the US
 - ❑ Small business preference
 - ❑ Non-exclusive license to US Government for its own use
 - ❑ Ability to grant compulsory license in the public interest
- ❑ No funding added or removed

Key Success Factors of Bayh-Dole

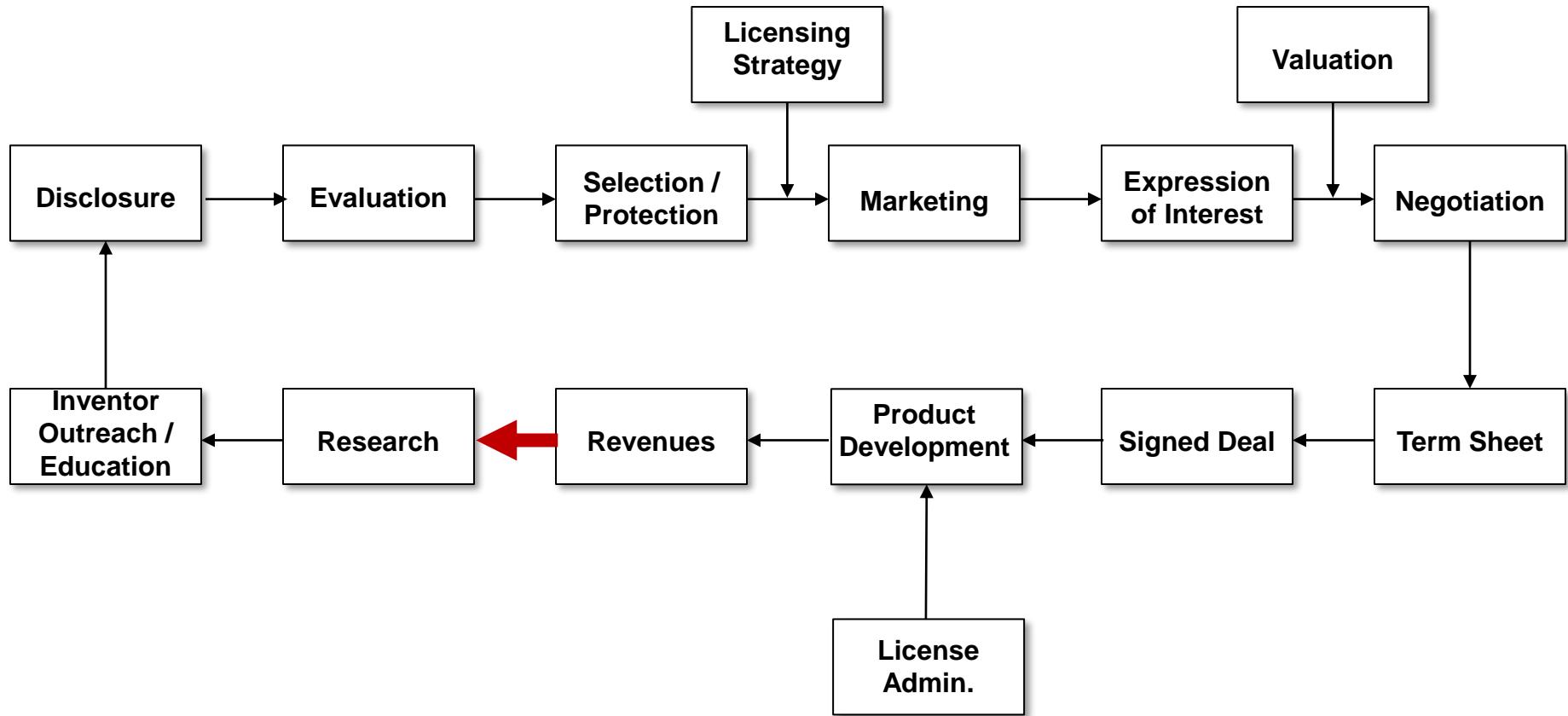
- ❑ It established the “Institutional Ownership” model of technology management
- ❑ The government established very few impactful rules:
 - ❑ Share with inventors
 - ❑ Preference for small business
 - ❑ U.S. manufacturing
 - ❑ License not assign
- ❑ And then got out of the way
 - ❑ Virtually no changes in the 40 years since
 - ❑ Allowed a solid body of best practices to emerge

Ownership of IP

- ❑ US and UK moved to institutional ownership from government ownership in 1980's
 - ❑ Bayh-Dole in 1980
 - ❑ UK abolition of NRDC monopoly in 1988

The Spread of the US Model

- ❑ Institutional ownership model of academic IP ownership has become dominant
- ❑ In Europe and Japan, “Professor’s Privilege” dominated historically
 - ❑ Transitioned to institutional ownership ~2000
 - ❑ Japanese National Universities became private corporations in 2004
 - ❑ In Europe, only Italy and Sweden still use Professor’s Privilege
- ❑ Institutional ownership model spreading in emerging economies
 - ❑ Brazil
 - ❑ S. Africa
 - ❑ India
 - ❑ Chile


Benefits of Institutional Ownership

- ❑ Establish clear title to IP generated by the institution's faculty
- ❑ Essential for collaborative research with industry
 - ❑ Many international funding arrangements will require it too
- ❑ Allows institution to create an IP management office
 - ❑ Develop expertise
 - ❑ Apply consistent policies and valuations
 - ❑ Provide funds for patenting

Ownership Issues

- ❑ Most institutions have exemptions
 - ❑ Students (except if supported on grants)
 - ❑ No significant use of institution's funds, resources, facilities and personnel
- ❑ Retain right to practice IP licensed to others
- ❑ "Shop right" to IP owned by faculty and brought to the institution

The Technology Transfer Process and Cycle

IP Policy

IP Policy

Example:

The mission of DNDi is to develop safe, effective and affordable new treatments for patients suffering from neglected diseases, and to ensure equitable access to these.

Objectives of IP Policy

- ❑ Provide for the intellectual property generated at the institution;
- ❑ Promote the progress of science and technology;
- ❑ Ensure that discoveries, inventions and creations generated by staff and students are utilized in ways most likely to benefit the public.

Benefits of IP Commercialization

- ❑ Foster continuing public support for basic research by showing its public benefit (namely, new products)
- ❑ Stimulate more industrial support for research
- ❑ Foster community support by creating jobs and new companies
- ❑ Help students learn entrepreneurial attitudes
- ❑ Enable faculty to see the practical results of research
- ❑ Generate new ideas for research themes

Source: *MIT IP Policy*

Items to be Addressed

- ❑ Coverage of intellectual property policy;
- ❑ Ownership of intellectual property;
- ❑ Disclosure of intellectual property;
- ❑ Marketing, commercialization and licensing of patents;
- ❑ Distribution of income;
- ❑ Rights and obligations of the inventors and the institution;
- ❑ Other pertinent issues.

Types of IP Generated by Academic Institutions

- Patents
- Utility models
- Industrial designs
- Copyright
- Literary works
 - Courseware
 - Computer software
 - Video
 - Multimedia
- Geographical indications
- Trade and service marks
- New plant varieties
- Trade secrets
- Rare
 - Biological materials most common implementation

What's In It For a Scientist?

- ❑ It's highly satisfying to see science have an impact beyond academia
 - ❑ Giving back to society
- ❑ It can bring additional resources into the scientific enterprise
 - ❑ New funding
 - ❑ Access to new technical capabilities
 - ❑ New collaborators
- ❑ It can create new avenues of research
 - ❑ Identify new problems that need to be solved
- ❑ It can create job opportunities for the students
 - ❑ Existing companies
 - ❑ Start-up companies
- ❑ And, finally, (s)he may just get really, really rich (I said “may”, not “will”!)

Distribution of Income

- ❑ Policy should specify who shares in any income generated
- ❑ Bayh-Dole Act specifies
 - ❑ Inventors must share
 - ❑ Balance must be used for education and research
- ❑ Standard policy in U.S.
 - ❑ Inventors 1/3rd
 - ❑ Institution to support research 1/3rd
 - ❑ Support TTO 1/3rd
- ❑ Ideal policy (IMHO):
 - ❑ Inventors personally 25%
 - ❑ Inventors' laboratory 25%
 - ❑ Institution to support research% 25%
 - ❑ Support TTO 25%

Case Study – Drs. Katalin Karikó and Drew Weissman

- ❑ U. of Pennsylvania
- ❑ Invented uridine → pseudo-uridine substitution
 - ❑ Made mRNA COVID vaccines possible
- ❑ 2023 Nobel Prize for Physiology or Medicine
- ❑ Penn patented the work
 - ❑ 2022 Royalty income \$1.3 billion
 - ❑ Inventors receive 30% personally plus 12.5% for their research account!

Oversight

- ❑ Will there be an IP Policy committee?
 - ❑ Amend and improve the IP policy
- ❑ Will there be an IP Management Committee?
 - ❑ Oversee the IP office
- ❑ How will disputes be resolved?
 - ❑ Initial fact finding and decision
 - ❑ Appeal
 - ❑ Final authority

Other Topics to Be Covered

- ❑ Procedures for public disclosure of intellectual property
- ❑ Protocols and restrictions regarding the marketing, commercialization, and licensing of intellectual property
- ❑ The rights and obligations of inventors and the institution
- ❑ Social issues
 - ❑ Global health/affordable access

Developing and Implementing an IP Policy

- ❑ Must include all constituencies in the institution
- ❑ Look at other institutions
 - ❑ All put their policy on the web
 - ❑ <http://web.mit.edu/policies/13/13.1.html>
 - ❑ <https://otl.stanford.edu/researchers/intellectual-property-basics/stanford-policies-intellectual-property>
 - ❑ WIPO has a template
 - ❑ <https://www.wipo.int/technology-transfer/en/ip-po>
 - ❑ Three components
 - ❑ Template policy
 - ❑ Very comprehensive
 - ❑ 21 choices / alternatives
 - ❑ Check list
 - ❑ User manual

Consulting Policy

Consulting

- ❑ Faculty consulting is critical to the technology transfer process
 - ❑ Academic inventions are embryonic
 - ❑ Continued faculty involvement is essential
 - ❑ They have the know-how in their heads

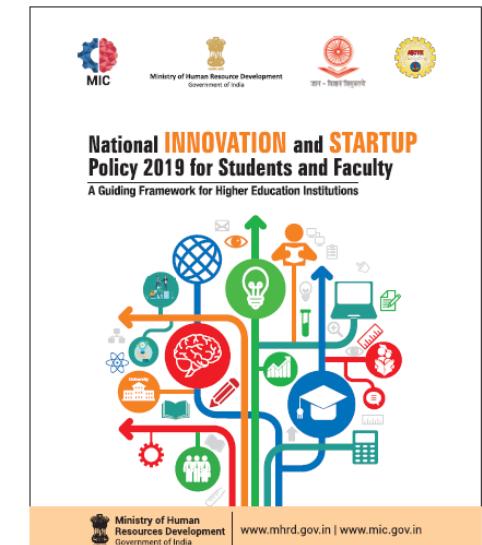
The Consulting Debate

- ❑ The culture of academic involvement in commercialization started early
 - ❑ Fight in the MIT Chemistry Department
 - ❑ 1920's
 - ❑ Chemical engineers said: "Our students will earn their living in industry, so we should study industry's problems to prepare them."
 - ❑ Chemists said: "We should study the purest chemistry and then they'll be able to solve any problem."
- ❑ Resolution:
 - ❑ Professors can spend one day per week consulting for industry
 - ❑ If they want to
 - ❑ Keep all the money

The Consulting Debate

- ❑ This policy has spread across North America
 - ❑ Widespread in Europe, Australia
- ❑ Allows professors to be seen working with industry without violating Conflict of Commitment policies

Rules


- ❑ Can't use the institution's facilities
 - ❑ That needs an SRA
- ❑ Can't use students
- ❑ Can't give away IP owned by the institution
- ❑ Can invent new things at the company's facilities
 - ❑ Can own them
 - ❑ Can assign IP to the company

Consulting

- ❑ Critical to company spin-out process
 - ❑ Professor commits his one day per week exclusively to the company
 - ❑ Gets substantial equity stake in company
 - ❑ In return for the “know-how” in his head
 - ❑ Chairs the Scientific Advisory Board
 - ❑ Helps guide the company’s technology development programs
 - ❑ Grad student/Postdoc joins the company fulltime

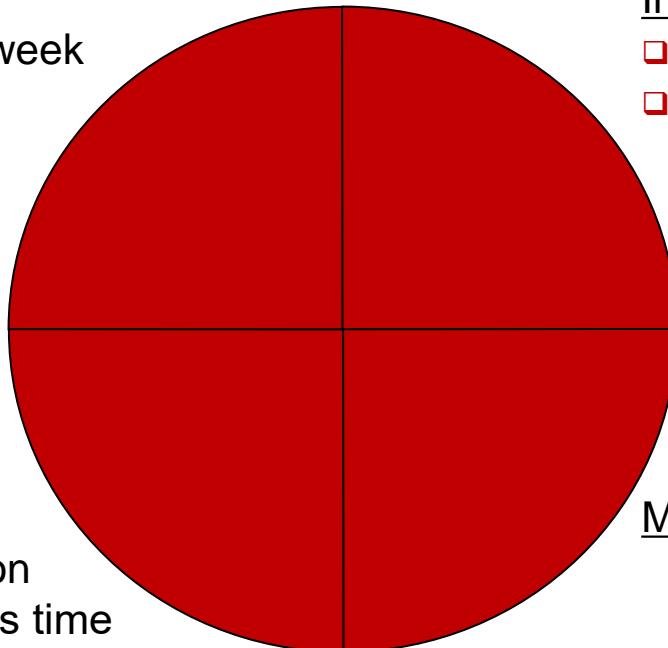
India

- ❑ National Innovation and Start-up Policy
 - ❑ Department of Education
 - ❑ 2019
- ❑ Start-up founder faculty member can:
 - ❑ Give institution 2.0-9.5% equity share in start-up
 - ❑ Reduce hours worked 20%
- ❑ Great concept
 - ❑ Too generous to faculty (IMHO)
 - ❑ Always demand 9.5%
- ❑ My model was a 25% share to the institution
 - ❑ At first round funding

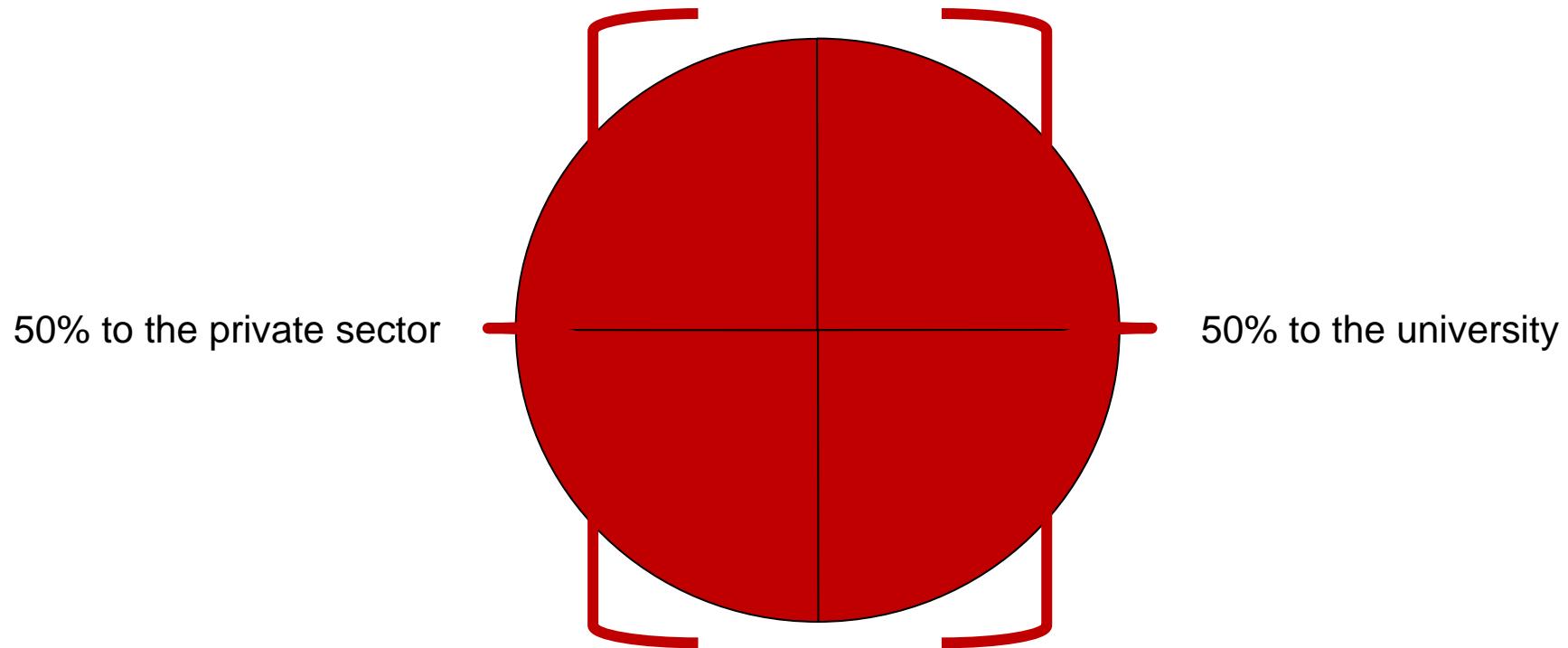
Equity – Dividing up the Pie

Inventor – 25%

- Gets to spend 1 day per week


Investors – 25%

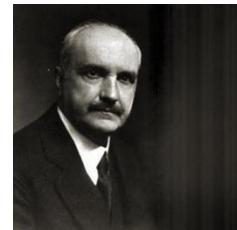
- For \$50,000 investment
- Values company at \$200,000


University – 25%

- Part of license consideration
- Compensate for professor's time
- Provide office for 1 year

Management Team – 25%

Equity – Dividing up the Pie



Conflict of Interest Policy

The Impact of Innovation on Academic Institutions

- ❑ Commercialization of academic innovation involves new relationships, concepts, pressures and temptations
- ❑ All must be anticipated and addressed before heading down the pathway
 - ❑ Hard to deal with on the fly
- ❑ Years of experience developing things the hard way in the US
 - ❑ Learn from them!

“Those who cannot remember the past are condemned to repeat it”

George Santayana

Conflict of Interest

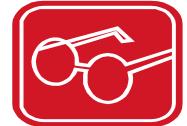
- ❑ A conflict of interest doesn't mean a professor has done anything wrong
 - ❑ Probably means they're doing things right
- ❑ The Yang to the Ying of technology transfer:
 - ❑ We encourage faculty to commercialize their research and create relationships with companies
 - ❑ Then we bury them in paperwork
 - ❑ Will impact their ability to participate in the clinical development of their work
 - ❑ May impact their ability to receive corporate support of your work
- ❑ Some parts of the institution may resent the commercialization activities

“No conflict

--

no interest”

David Blake, JHU, 1992



BU Policies on Investigators' COI

- ❑ It's all about the PSD
 - ❑ Project Specific Disclosure
 - ❑ Identifies potential conflicts affecting institutional research projects
 - ❑ Do they have a Significant Financial Interest (SFI)
- ❑ All BU and BMC Investigators must file Project Specific Disclosures.
- ❑ Filed when:
 - ❑ Funding application submitted to Research Administration
 - ❑ IRB application
 - ❑ Only if unfunded
 - ❑ Any unfunded research project affected by SFI
 - ❑ E.g., Working on something for their start-up in their lab
 - ❑ Material change not previously disclosed

What Constitutes an SFI?

- ❑ You expect to earn consulting income/salary from a company interested in the research in excess of \$10,000 in the past or coming twelve months
 - ❑ Proposed NIH rule changes will reduce this:
 - ❑ \$5,000 for publicly traded companies
 - ❑ \$0 for privately held companies
 - ❑ All SFI's to be posted on a public website
- ❑ You have any equity in a company interested in the research
 - ❑ An SBIR or STTR grant will automatically trigger a COI disclosure
- ❑ You have rights in intellectual property used or studied in the research
 - ❑ University base salary and financial interests in mutual funds are not SFI

The Culture of Academia

University Leadership in Commercialization

Massachusetts universities have had a long time involvement in research-driven economic development

- ❑ Karl Compton, President of MIT proposed using academic technologies to create new industries to lead Massachusetts out of the Great Depression
- ❑ Later partnered with General Georges Doriot, HBS, to found American Research and Development Corporation
 - ❑ First organized VC fund
 - ❑ 1947

A Voluntary Process for Faculty

- ❑ It's their choice to participate
 - ❑ Nobody **CAN** force faculty to do anything they don't want to!
- ❑ The Institution's role is to make it easy for them to commercialize
- ❑ Patents may seem to be anathema to academic freedom
 - ❑ Locking people out versus open dissemination
- ❑ The role of a patent is to give control over how discoveries are commercialized
 - ❑ And by whom

Culture

- ❑ Commercialization often a new concept
 - ❑ Many in university will feel commercialization isn't a proper role for academics
 - ❑ Feel they should be
 - ❑ Teaching
 - ❑ Researching
 - ❑ Getting grants
 - ❑ Graduating Ph.D. students
 - ❑ Important that academic management be seen to support and endorse commercialization
- ❑ Essential that participation be voluntary
 - ❑ Institution's job is to facilitate the process for those who chose to do it

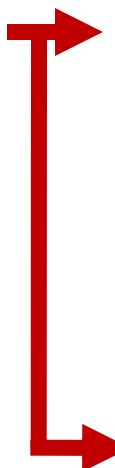
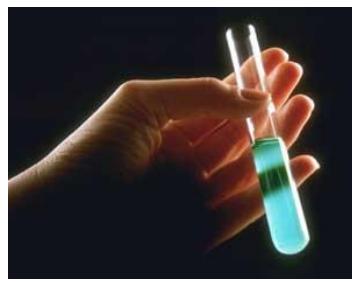
Culture

- ❑ Most faculty DON'T participate in the technology transfer process¹

<u>Career Disclosures</u>	<u>%</u>
Never	64.2
Once	14.8
Twice	7.6
Three to five	11.4
Six or more	2.0

¹ Thursby, J. G. and M. C. Thursby (2003). Patterns of Research and Licensing Activity of Science and Engineering Faculty. Working Paper. Atlanta, GA, Georgia Institute of Technology., available at: <http://hdl.handle.net/1853/10723>

But the Best Scientists Do



<u>Nobel Prize Winners*</u> with <u>Patents</u>	<u>%</u>
Physics	44%
Chemistry	77%
Physiology or Medicine	78%

* Winners of Nobel Prize from 2001 to 2013

Source: *Qingzhi Zhang, Collette LaFlamme, Trent Merrell and Ashley J. Stevens, Unpublished Data*

The Traditional Scientific Paradigm

The academic dissemination route

The commercial dissemination route

Has The Nature Of Academic Research Been Changed?

- ❑ Publication rate doubled over course of study
- ❑ Disclosure rate went from 1% to 10% of faculty per year
- ❑ No change in “basic” vs. applied” balance of research, as measured by journals published in

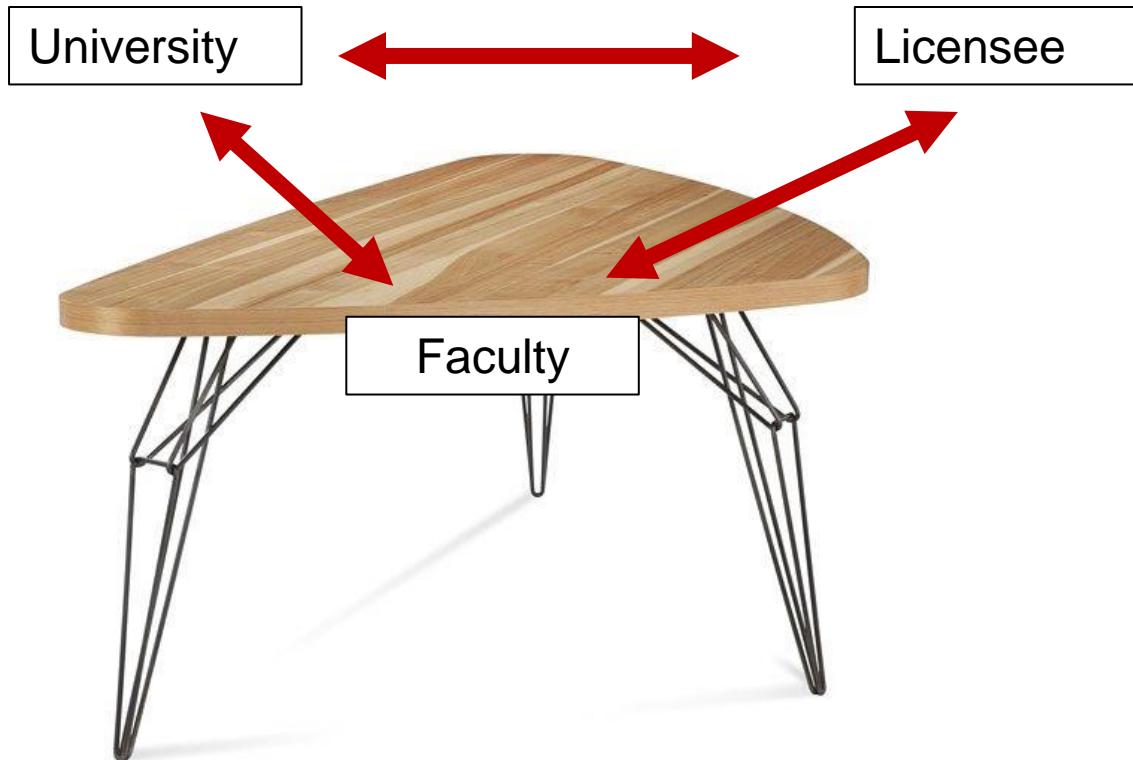
Thursby and Thursby, ibid

Lessons Learned

- ❑ Academia can participate in commercialization without compromising the academic mission
- ❑ A voluntary process
- ❑ Institutional culture is important
 - ❑ At MIT, starting a company is expected these days

Tea / Coffee Questions?

astevens@bu.edu


Start-ups, Equity, Entrepreneurship

Start-ups

- ❑ Start-ups are different
 - ❑ Independent role for inventor even under an institutional ownership IP policy
 - ❑ Potential for great wealth
 - ❑ Google
 - ❑ Stanford made \$355 million
 - ❑ Two drop out Ph.D. students made \$20 billion each!
 - ❑ May trigger conflict of interest issues
 - ❑ Very strictest Col policies (Harvard, MIT, U. CA) preclude faculty from receiving research support from start-up if they own stock directly

Negotiating a Start-up Is Different

- ❑ Faculty's independent role means the negotiating table has 3 sides

What is the University's Deal with the Start-up?

- ❑ In U.S., start-ups are normally initiated by faculty and / or an entrepreneur
- ❑ In U.S., university negotiates license to IP with the start-up, just like any normal licensee
 - ❑ Normal milestones, AMR's, running royalties, sublicense income sharing, etc.
 - ❑ Receives stock in start-up in lieu of Upfront Fee
 - ❑ Company should not be asked to pay license fees upfront
 - ❑ Not much money at this stage
 - ❑ Should all go into developing the technology
 - ❑ Some U.S. universities even spread patent cost reimbursement over multiple years

What is the University's Deal with the Start-up?

- ❑ How much?
 - ❑ Two models
 - ❑ Co-Founder
 - ❑ University gets same number of shares as the other founders
 - ❑ E.g., 4 Founders at 25% each → 5 Founders at 20% each
 - ❑ Anti-dilution
 - ❑ Give me [5%] now, but keep me at [5%] until [\$5 million] has been raised in equity funding
 - ❑ Sound very different
 - ❑ Actually work out pretty similarly
 - ❑ U. of California has a policy of less than 10%

What is the University's Deal with the Start-up?

- ❑ In U.S., university usually doesn't invest in the start-up
 - ❑ Pre-seed funding via grants
 - ❑ Non reimbursable
 - ❑ May provide seed funding, if it has a seed fund
 - ❑ Some universities may invest in later rounds to preserve ownership
 - ❑ Some universities are forming partnerships with VC funds
 - ❑ VC fund makes the investment decisions
- ❑ Normally, faculty stays at the university
 - ❑ Works with start-up using one day per week consulting policy
- ❑ Grad students / post-docs working on the project often join the start-up
 - ❑ After research done and published, PhD received

Different Models in Europe

- ❑ Some bigger U.K. universities are much more aggressive about start-ups
- ❑ Initiate and control start-up formation and initial fund raising
 - ❑ Finish up with 50% of the founders' round of stock
- ❑ In U.K., a number of universities have affiliated venture funds
 - ❑ Linked to one university or a group of universities
 - ❑ E.g., Oxford has a £850 million fund

Faculty's Role in the Start-up

- ❑ Will have an extraordinary interest in the license terms
 - ❑ Get their normal share per patent policy
 - ❑ But may argue for concessionary terms to maximize equity value
 - ❑ Remember the 3-sided table?
- ❑ Will have an independent negotiation with the start-up for terms of his / her consulting agreement
 - ❑ Chairs Scientific Advisory Board
 - ❑ Commits their one day per week consulting time exclusively to the start-up
 - ❑ Some defined period of time
 - ❑ Gets an annual consulting fee
 - ❑ Gets stock in start-up directly
 - ❑ In addition to university's stake

An Alternative to Owning Stock

- ❑ Stock in a start-up can't be sold until company is sold or gets acquired
 - ❑ A "Liquidity Event"
 - ❑ Who cares about owning stock they can't sell?
- ❑ An alternative is to have an Exit Fee or Change of Control Fee
 - ❑ Cash payment when start-up is acquired or goes public
 - ❑ Essentially a non-dilutable equity interest
 - ❑ E.g., NIH
 - ❑ Precluded by law from accepting stock in start-ups
 - ❑ Has a schedule of exit fees in their standard license
 - ❑ 0.75% of FMV if only *in vitro* data at time of license
 - ❑ 1.5% of FMV if animal or toxicology data at time of license
 - ❑ 3.0% of FMV if human clinical data at time of license

Distribution Issues with Equity

- ❑ When to sell?
 - ❑ Most universities have a “sell at first liquidity” policy
 - ❑ Often a six month lock-up period after IPO
 - ❑ Stock can go up (Google) or down (Facebook) after the IPO
 - ❑ Endowment invests in the stock market, not the TTO
 - ❑ Liability issues to inventors if stock goes down
 - ❑ U. of California allows some stock to be held
 - ❑ 50% at first liquidity
 - ❑ 50% after 6 months
 - ❑ Option to hold up to 25% for up to 5 years
 - ❑ If TTO requests
 - ❑ Must be elected at time equity is received
- ❑ I always advised my inventors to sell at least a third or half at first opportunity

Distribution Issues with Equity

- ❑ When to distribute to inventors?
 - ❑ When license signed?
 - ❑ Immediately prior to IPO?
- ❑ What to distribute?
 - ❑ Only stock received for license
 - ❑ Not any stock received from investment or incubation
- ❑ Whom to distribute to?
 - ❑ Do inventors get their Patent Policy share of sale of equity?
 - ❑ BU policy was “Not if they got a comparable amount to the university”
 - ❑ Stanford policy was “Yes”
 - ❑ Larry Page got 1/3rd of Stanford’s \$355 million
 - ❑ His own stock was worth \$20 billion after IPO

Assigning the IP

- ❑ U.S. universities don't assign IP
 - ❑ Not permitted under Bayh-Dole without permission of funding agency
 - ❑ They won't give it
 - ❑ If Google can get started with an exclusive license from Stanford, not an assignment.....
 - ❑ The ecosystem has come to accept this
 - ❑ Importance is that you can terminate a license by giving notice
 - ❑ Non-performance
 - ❑ Material breach
 - ❑ Get IP back and relicense
 - ❑ With all the know-how the licensee has developed
 - ❑ Much weaker negotiating position if you've assigned

Assigning the IP

- ❑ In other jurisdictions, the Bayh-Dole legislative shield doesn't exist
 - ❑ Pressure to assign
- ❑ Try and limit
 - ❑ E.g., not till
 - ❑ IPO or acquisition by publicly traded company
 - ❑ Launch of product
 - ❑ By this stage, need to terminate has disappeared

Other Things Universities Do to Support Entrepreneurship

- ❑ Entrepreneurship Centers
 - ❑ Incubation
 - ❑ Can be a regional initiative
 - ❑ University spin-outs
 - ❑ Other local companies
 - ❑ Mentorship
 - ❑ Regional initiative
 - ❑ Funding sources
 - ❑ University
 - ❑ City
 - ❑ National government

A Few Final Thoughts

Technology Transfer – a Horrible Business Model

- ❑ Hire and pay staff
 - ❑ Must be comfortable operating in the fog of uncertainty of early stage technologies
- ❑ Train them to change the culture of professors/scientists
 - ❑ Start to identify useful inventions coming from their research
- ❑ Pay for patent applications on the inventions they eventually disclose
- ❑ Market the inventions
 - ❑ Inventions typically 4 years old when licensed
- ❑ Eventually license 25% of the inventions
 - ❑ Write off the investment in the rest
- ❑ Wait while the licensees develop the inventions into products to sell
 - ❑ Some technologies don't work or aren't cost effective
- ❑ Finally start to receive royalties on the successful inventions
- ❑ Give away 75-100% of the income
- ❑ Wait for the patents to expire

A Cautionary Final Note

- ❑ Technology transfer from academic institutions can have a big impact on a country's economy
- ❑ **BUT** this doesn't necessarily translate to the activity being profitable for the university:
 - ❑ If a tech transfer office gets a 5% royalty
 - ❑ Or owns 5% of a start-up company that gets sold
 - ❑ It's doing a really great job
 - ❑ **BUT THAT MEANS THAT 95% OF THE ECONOMIC IMPACT IS OUTSIDE THE UNIVERSITY**
 - ❑ In the private sector
 - ❑ Which had to finance the development of the university invention
 - ❑ Tech transfer may benefit the country but be a net cost to individual universities
 - ❑ And university Presidents hate net costs!

A Cautionary Final Note

- ❑ Which is why governments should support tech transfer at their universities
 - ❑ It should be considered part of the country's core economic infrastructure
 - ❑ Like airports, railways, roads, internet etc.
- ❑ Support particularly important in the early stages
 - ❑ Typically for 10 years
 - ❑ Canada, Denmark, France, Japan, UK, Chile
- ❑ Many of the inventions that come from emerging country economies target local problems, opportunities and issues

Thank you for listening.

Questions?

astevens@bu.edu