

Technology Development and Advancing it to the Market – Case Study

Innovation is not linear. Instead it is a continuous conversation between the facets of successful business: A customer / market need – an end user trying to solve a specific problem.

D. SRINIVAS

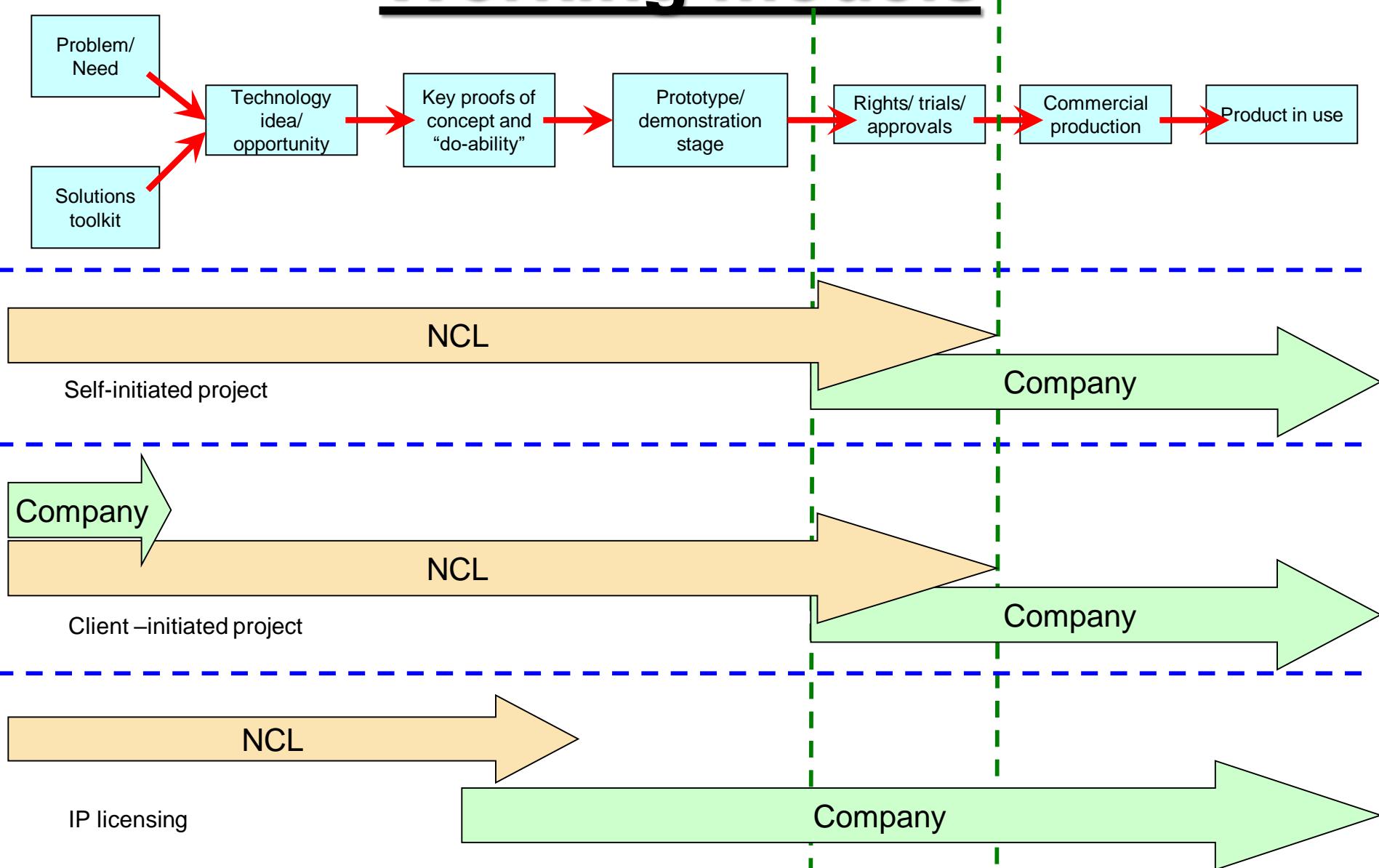
CSIR-National Chemical Laboratory, Pune

Innovation – Innovator (Dictionary meaning)

- ✓ Novel / intelligence / disruptive creation
- ✓ A person or group that introduces something new and does something for the first time – a true pioneer and innovator who always pushes the boundaries and follows his vision.

- DNA of innovator (by [Jeffrey H. Dyer](#), [Hal Gregersen](#) and [Clayton M.](#)

Christensen): (<https://hbr.org/2009/12/the-innovators-dna>)


- (1) Associating,
- (2) Questioning,
- (3) Observing,
- (4) Experimenting and
- (5) Networking

Why does one more creative than the other :

Qualities of innovators –

- (1) Continuous reflection
- (2) Unattended exploration
- (3) Iterating between abstract and concrete thinking
- (4) Action oriented
- (5) Opportunity focused
- (6) Mental resilience
- (7) Intellectual humility
- (8) Courage
- (9) Sensitivity towards uncertainties
- (10) Designing valuable experiments
- (11) Extracting learning
- (12) Implementing learning and idea adaptation

Technology development & transfer: Working models

Case Study of Industry Projects

- **Example 1: Technology Licensing + Co-development** (Titanosilicate with Süd Chemie and DMC with RIL)
- **Example 2: Research + Technology Licensing** (Biodiesel/Lubricants – Benefuel Inc.)
- **Example 3: Developing in-depth understanding** (Drug intermediates – Emcure; Industrial catalysts – Indian Industries; R&D/Tech. Service)
- **Example 4: Information analysis and advisory** (Zeolites in industrial applications – consultancy)

Problem/Need – Solutions toolkit

- Presently, most of our energy is derived from fossil resources (Coal, Natural gas & Oil).
- Transport fuels form a major part of the Energy requirement.
- Fossil resources are limited. They impart adverse effects on the Environment.
- Thus, clean energy is the need of the day.
- **Sustainable Development requires Energy Security and Protection of the Environment.**
- Renewable / Clean Energy leads to Sustainable Development. It can bring down our oil import bill.
- **Transport Fuels from biomass, water & CO₂ can form Clean Energy.**

India's Clean Energy Transition

- ✓ To reach net-zero emissions by 2070.
- ✓ To meet 50% of its electricity requirement from renewable energy sources by 2030 - installing 500 gigawatts of renewable energy capacity, reducing the emissions intensity of its economy by 45%, and reducing a billion tonnes of CO₂.
- ✓ India aims to become a global hub for green hydrogen production and exports.
- ✓ India brought in National Policy on Biofuels

Bio-fuels

- Fuels derived from Biomass
- Renewable, C-neutral, create additional employment, rural revitalization, decentralized energy
- Excess available biomass in India is ~ 200 MMTPA
- At 10% substitution, biofuels will bring in Rs. 75,000 crores in rural economy.
- Efficient conversion technologies are needed.
- Bio-fuels: bioethanol, **biodiesel**, bio-JET fuels, biobutanol, biohydrogen, etc.

Inedible Oil Feedstock for Fuels

- Avoid food vs fuel controversy.
- Could be grown even on arid lands (with little water/nutrients).
- Algae cultivation helps controlling atmospheric CO₂ levels.
- Other than TG, inedible oils contain mono and diglycerides, fatty acid (FFA), water, phospholipids (which are impediment to the conventional alkali-based biodiesel process).
- Example: Jatropha, Karanja, Animal Fat, Algae, etc.

BIOFUELS FROM VEGETABLE OILS

- Biodiesel (1ST Generation)

Fatty Acid methyl esters - methyl esters of C₁₆ - C₁₈ acids: Fuel boiling in the petro-diesel boiling point range obtained by TransEsterification of triglycerides present in vegetable and algae oils with methanol.

- Green Diesel (2nd Generation)

Hydrocarbons; C₁₆ - C₁₈ saturated, branched Hydrocarbons similar to those in petrodiesel; High cetane number (70 – 80). Good stability

CATALYTIC PROCESSES FOR BIODIESEL MANUFACTURE

- **Homogeneous:** COMMERCIAL. NaOH; 65°C; large quantities of **water and acid washes**; yields **low quality glycerol**; feedstock limitations; salt **byproducts**.
Enzymatic: Lipase; **cost of enzyme is a major barrier**. Enzyme denatures in the presence of **methanol**; requires additional solvent THF or hexane.
- **Heterogeneous:** Zn aluminates (IFP), Ca-carbonate, ETS-4/10, sulfated/tungstated zirconia.

Technology / Idea, Opportunity

- **Use of inedible oils** instead of edible oils; inedible oils contain significant amount of FFAs.
- Simultaneous esterification of FFA & transesterification of glycerides; **one-pot process**
- **Catalyst tolerance towards water** produced in esterification reaction.
- **Catalyst life** - stability of catalyst towards impurities in inedible oils and products generated during reactions.
- **Glycerin yield and purity** – important for economic viability of biodiesel plant

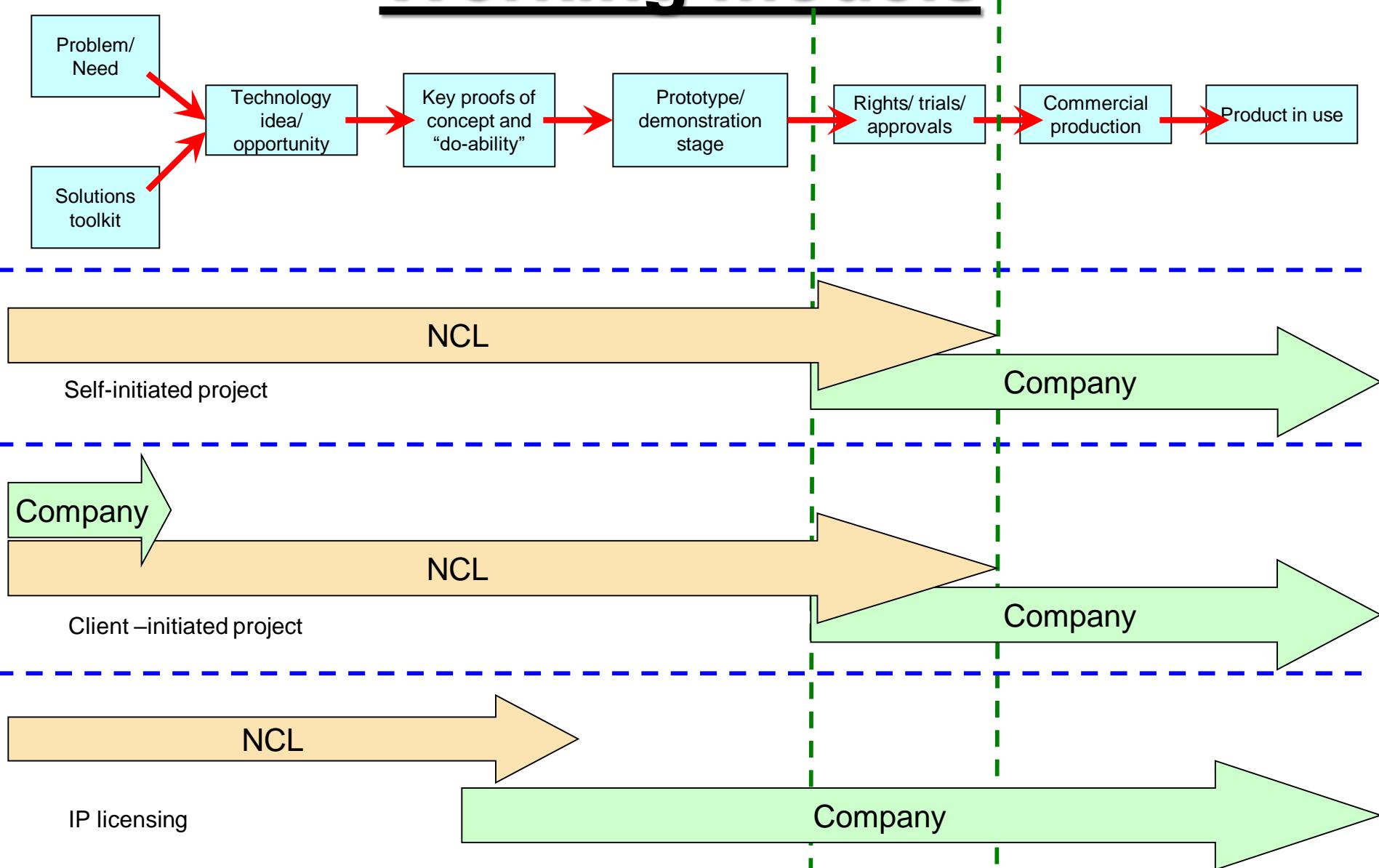
What should be the characteristics of a stable, high performance catalyst ?

NCL's Catalyst Characteristics

- Solid reusable catalyst
- Hydrophobic surface
- Acid functional groups

Proof of concept: Feedstock Flexibility

FEEDSTOCK	% FFA CONTENT
Plant/vegetable oil	0.05-20
Waste cooking oil	4-50
Animal fat/tallow	5-30
Brown Grease	5-100

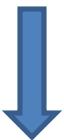

Traditional biodiesel technology turns FFA into soap.

With traditional biodiesel processing there is a 2% yield loss for every 1% of FFA removed.

NCL catalyst turns FFA into biodiesel and enables higher yield of product biodiesel.

Technology development & transfer: Working models

Lab to Demonstration Scale & Commercialization



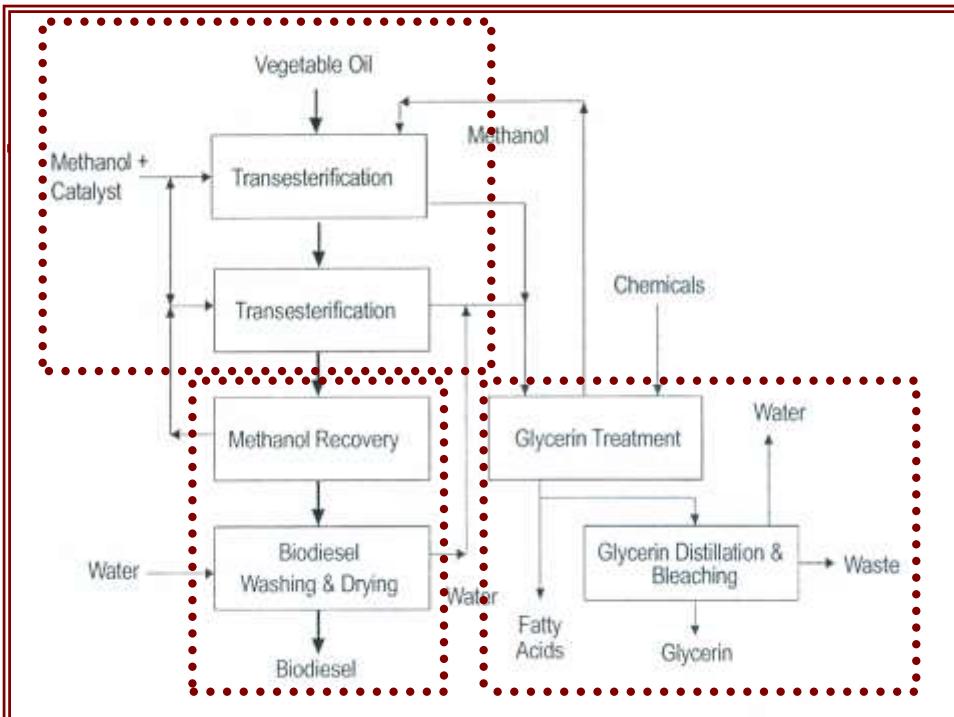
Batch Process

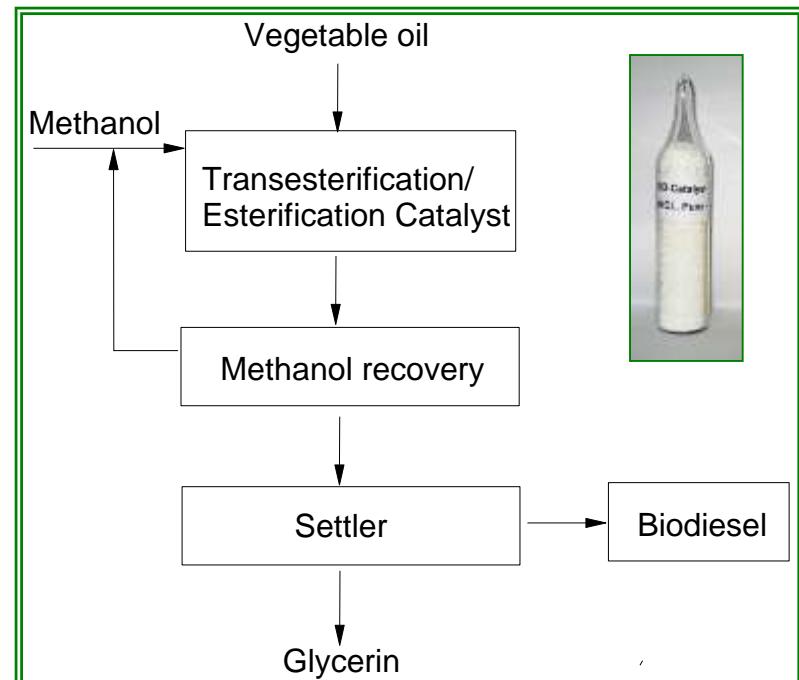
→

(100 ml)

(0.8 lit/day)

(1 ton/day)


(20 liters)


(160,000 tons/yr)

Solid Catalyst and Continuous Process for BIODIESEL

Conventional Technology *Homogeneous Catalyst*

ENSEL™ Technology *Heterogenous Catalyst*

ENSEL Technology for Biodiesel

- Solid catalyst & continuous process for biodiesel from non-edible oils.
- IP was licensed to Benefuel Inc., USA. A commercial facility (160,000 tons/year) was established at Beatrice, Nebraska, USA.
- Sud-Chemie India Pvt. Ltd., Vadodara manufactured and supplied catalyst.
- Biodiesel - renewable fuel derived from biomass; carbon-neutral; environmentally & economically beneficial; energy independence.

- Solid catalyst
- Feedstock flexibility
- Water-free & zero waste process
- High yield of biodiesel
- High quality glycerin
- Product with ASTM & EN specifications
- Economic process

Contributors for Lab to Market

- Students (Ph.D., M.Tech., M.Sc., BE/B.Tech, PAs)
- Divisional Colleagues
- Directors / Deputy Directors / Leadership
- BD Division team
- IP team
- Support staff
- The Organization
- Benefuel Inc.

Output / Outcome

- Technology development, licensing (Benefuel Inc., USA) and advancing it to the market
- Monitory realization
- Publications: 15 (International peer reviewed journals)
- Patents: 5 (India & PCT)
- Ph.D thesis.: 5
- Trained students: 35
- New Project Initiations: 2 (CSIR-Network ; Industry)
- National Awards / Recognitions
- **Economic** : Duonix produces 5% biodiesel of US requirement.
- **Societal** : New Jobs, Green Fuel, cut on CO₂ emissions, energy independence
- **Strategic** : 1st Solid catalyst based BD process, Eco-friendly zero-waste process

Factors that make technology transfer successful

- Maturity and Communication of the Teams
- Innovativeness
- Knowledge
- Quality of the product
- Motivation
- Commitment by all the parties
- A documented, planned approach using trained and knowledgeable personnel with good ethics working within a quality system
- Speed of technology transfer

Characteristics of Successful Technology Transfer

<https://nap.nationalacademies.org/read/10321/chapter/1>

- ✓ The technology must be appropriate for the proposed application.
- ✓ The technology must be at an appropriate level of maturity.
- ✓ The recipient must be at an appropriate level to apply the technology.
- ✓ The technology must meet the organizational needs of the recipient.
- ✓ The technology must be economically viable.
- ✓ Innovation is a continuous conversation between the facets of successful business: A customer / market need – an end user trying to solve a specific problem.

Dimethyl Carbonate (DMC): Market Demand & Applications

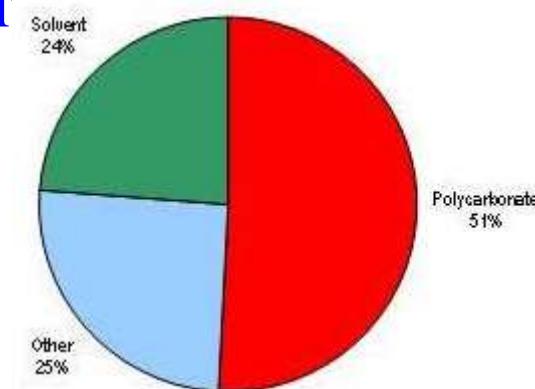
1. Solvent - Paints, Inks, Coatings, etc.
2. Electrolyte – Lithium ion batteries
3. Versatile Chemical / Intermediate (instead of phosgene, dimethyl sulfate, etc): Polymers (eg., polycarbonates, polyurethanes), pharmaceuticals, pesticides, anti-oxidants, high performance resins etc.
4. **Fuel Additive / Gasoline Blending Component (Future application):**

Very high oxygen content (53 wt% vs 18 wt% in M)
carbon-carbon chemical bonds

Good blending octane

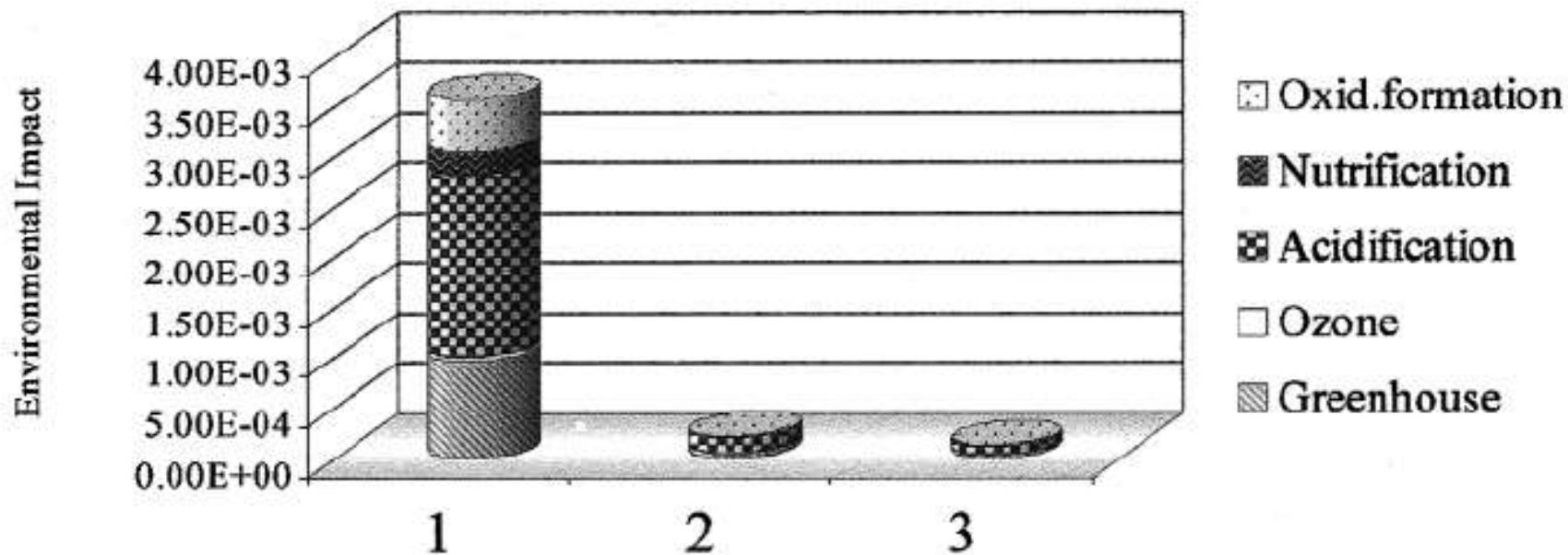
(RON = 109, MON = 102, R+M/2 = 105)

No phase separation; Low toxicity


Rapid biodegradability

Reduces harmful particulate matter (PM) emissions

Increases thermal efficiency of diesel engines


At the same wt% oxygen in the fuel, DMC reduces total HC, CO and formaldehyde more than MTBE (Amoco emission tests)

International Capacity of DMC (2002) \approx 170,000 t/a; output and consumption \approx 90,000 t/a (China Chemical Reporter Oct 16, 2004)

Life Cycle Assessment of DMC Synthetic Pathways

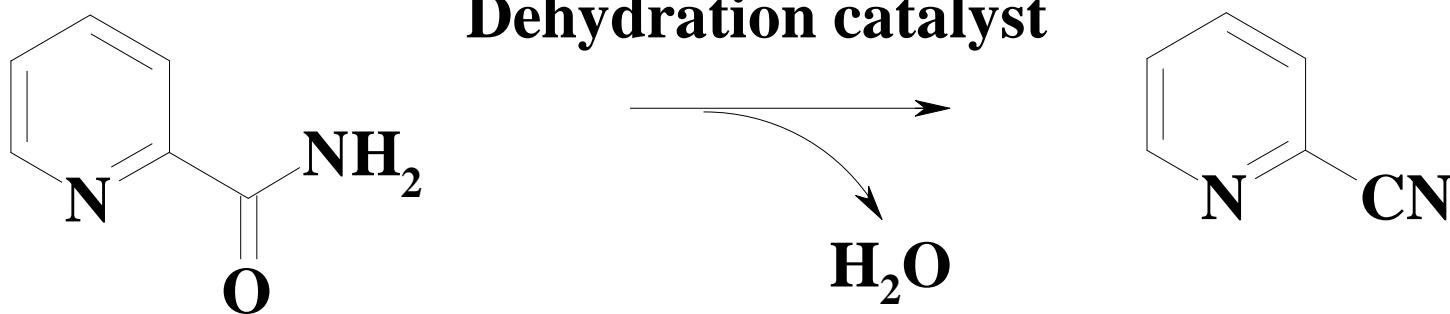
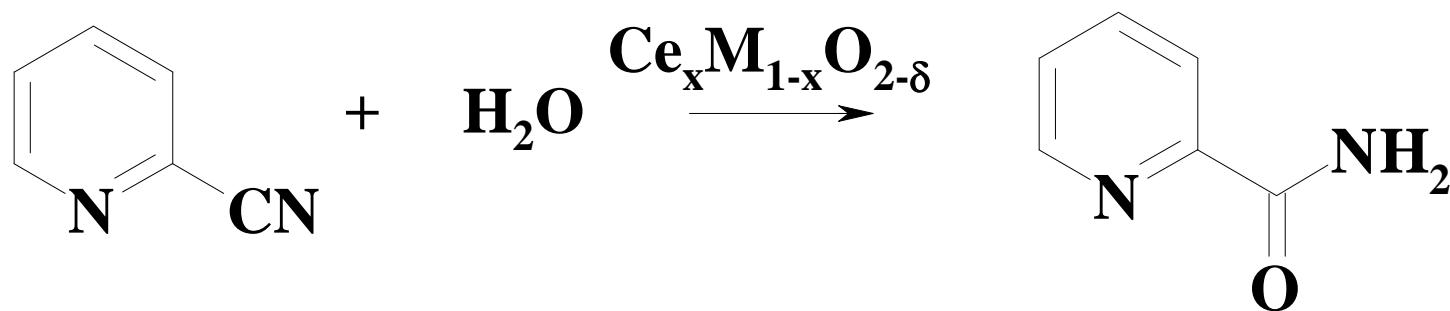
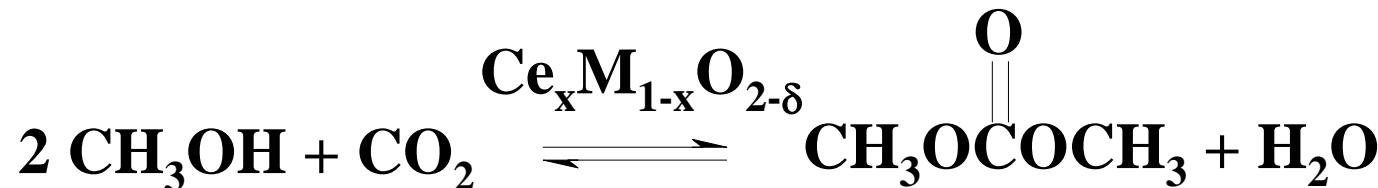
Aresta et al., Energy & Fuels 15 (2001) 269-273

1: DMC from phosgene and methanol; 2: DMC from urea and methanol;
3: DMC from methanol and CO_2 .

Recycling CO₂ into Fuels Pool

- CO₂ emissions from top 10 emitting countries amount of 30 GTPA. India emits ~ 2.5 GTPA and occupies the 4th position in the list.
- COP-21 resolution: CO₂ emissions to be reduced by 30 – 35% of 2015 levels by 2025.
- Recycling of CO₂ into Fuels is a possible solution to achieve this task.
- CO₂ is thermodynamically stable and kinetically inert molecule.
- It requires addition of H₂ for activation and conversion into fuels.
- Sources of H₂: Impure hydrogen, electrolysis/photolysis of water ??

Direct Synthesis of DMC from MeOH & CO₂




Advantages:

1. High atom efficiency
2. Environment benefits / Carbon credit
3. Byproduct is water
4. CH₃OH is also produced from CO₂ by hydrogenation.

Drawbacks:

1. Limited by thermodynamics ($\Delta G = + 26.21 \text{ kJ/mol}$)
2. Low DMC yield
3. Catalyst deactivation in presence of water

Strategy to enhance DME yield

CONCLUSIONS

- Clean energy is essential for Sustainable Development.
- Biofuels from inedible oils offer clean transport fuels.
- The ENSEL® technology (commercialized at Beatrice, Nebraska; 160,000 TPA) converts a range of inedible oils to biodiesel.
- NCL's catalyst process for direct synthesis of dimethyl carbonate (Reliance Inc) is high yielding and has low environmental impact.

Barriers to Tech. Transfer - 1

- **Organizational or Economic Barriers:**

- ✓ Different orientations exist between the technology provider (R&D organization) and its user (business) concerning the aspect of time (long vs. short term), goal (scientific vs. techno-economic market) and risk (high risk vs. low risk expectance).
- ✓ Large asymmetries exist between the provider and the recipient in terms of having different characteristics, e.g., skills, prices, endowments, internal structure, size, and experience, etc.
- ✓ Different approaches are taken by the technology provider and recipient towards the desired results. Usually, these approaches include innovation-oriented vs. market-oriented approaches or focus on superior technologies vs. easily implemented

Barriers to Tech. Transfer - 2

- **Organizational or Economic Barriers (contd.):**
 - ✓ Imperfect technical information transmission and insufficient co-operation between the R&D organization and the technology user at the stage of technology development are often evident.
 - ✓ Unsatisfactory or poor business management and negotiation skills exist on both sides (the technology provider and recipient); however, this problem is usually mostly on the provider's side.
 - ✓ There are often problems with selecting the most appropriate technology transfer mechanisms.
 - ✓ The lack of an accurate assessment of technology transfer frequently exist.

Barriers to Tech. Transfer - 3

- **Organizational or Economic Barriers (contd.):**
 - ✓ There is often the lack of a plan for the implementation of research results and ex-post analysis of implementation outcomes.
 - ✓ R&D organizations focus too much on the advancement and dissemination of knowledge, e.g., making results public before their patenting, which deeply collide with the demands of industry.
 - ✓ Technology providers frequently have insufficient knowledge about potential markets and consumers.
 - ✓ There is frequently insufficient time for testing and the demonstration of new technologies before they can compete with well-established technologies, which hampers the process of the practical application of technology.

Barriers to Tech. Transfer - 4

- **System Barriers** :

- ✓ The lack of developed infrastructures, market and public incentives exist.
- ✓ The absence of a technological development plan is observed at a national level, because the public decision making power is not able to create conditions of promotion, support, and a coherent target for public and private R&D and innovation.
- ✓ Standard-setting groups offer a safeguard against unexpected failure that often deliberate and can delay implementation of innovations.
- ✓ Lobbies or interest groups effectively impede change and amelioration in the legal system, making technology transfer impossible or inefficient.

Barriers to Tech. Transfer - 5

- **Technical Barriers:**

- ✓ A high level of tacit knowledge included in technologies makes technology transfer more difficult (especially with regard to the newest solutions).
- ✓ New technologies need to be tested and demonstrated thoroughly before public agencies will accept them in competition with other, well-established technologies.
- ✓ Technology is too sophisticated, making it difficult or impossible to change in order to make it suitable for the requesting production/market.
- ✓ The recipients are not able to discern the level and characteristics of the technology needed.

Barriers to Tech. Transfer - 6

- **Other Barriers** :

- ✓ Multiplication of solutions: R&D organisations often have the capacity to develop a single professional solution. Since its development is connected with high technical and personnel requirements, problems concerning its acquisition by the potential producer may arise.
- ✓ A long time is needed for technology development, resulting from the fact that the technologies offered are mainly of a unit character, which may lead to the discouragement of the potential clients who wish the technology to be developed as quickly as possible.

Barriers to Tech. Transfer - 7

- **Other Barriers:**
 - ✓ Innovative technologies represent a short series or unit character, which means that their production is very expensive; therefore, they are less competitive.
 - ✓ Technological concepts are changed in the course or even after the contract execution.
 - ✓ A prototype version of a technology is often not compatible with the demands of mass production – achieved high technical parameters vs. unsatisfactory economic parameters.
 - ✓ The lack of professional marketing as well as the lack of skills and practice in technology transfer resulting in the low effectiveness of such activities.

Barriers to Tech. Transfer - 8

- **Other Barriers** :

- ✓ Problems concerning Intellectual Property Rights resulting from the joint development of an innovation by the consortium, particularly when one or more partners are from business.
- ✓ Inspiring industry by ideas revealed or discussed at the early stages of co-operation preceding the signing of a contract, frequently stimulating ideas by industry, which tries to apply them by themselves.

Technology Transfer barriers and challenges faced by R&D Organizations , Adam Mazurkiewicz and Beata Poteralska, Procedia Engineering 182 (2017) 457 – 465

Barriers to Tech. Transfer - 9

- **Other Barriers:**
 - ✓ The existing triad of co-operation extremely profitable only for the industry side: the lowest possible price (without costs of research and development) – complete takeover of property rights by enterprises – R&D organization responsible for possible losses in the course of using the technology.
 - ✓ Organisational changes in industrial enterprises.
 - ✓ Different work organization in business and in science.
 - ✓ The interest of industry in financing the final result, not the research process itself.

References

- ✓ M. Nandagopal, K. Gala and V. Premnath, ISB Conf. Paper (2011)
- ✓ L.L.J. Meijer et al. Renew. Sust. Energy Rev. 112 (2019) 114-126.
- ✓ A. Mazurkiewicz and B. Poteralska, Procedia Engineering 182 (2017) 457 – 465.
- ✓ R. Ravi and M.D. Janodia, Journal of the Knowledge Economy 13 (2022) 787-803.
- ✓ “Great Mistakes in Technology Commercialization,” K. Parker and M. Mainelli, Z/Yen Ltd. The Journal of Strategic Change, Vol. 10, 2001.